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Polynomials of degree at most n which are real on the real axis and do not
vanish in the open unit disk are considered. Sharp point-wise bounds for the
derivative p$(x) at an arbitrarily prescribed point x0 of the unit interval, in terms
of the maximum of | p(x)| on [&1, 1] are obtained. Certain other related problems
are also solved. � 1996 Academic Press, Inc.

1. Introduction and Statement of Results

1.1. Inequalities of the Brothers Markov

Let Pn denote the class of all polynomials p(x) :=�n
&=0 a&x& of degree at

most n. Motivated by a question asked by the chemist Mendeliev, Markov
[10] proved the following.

Theorem A. If p # Pn and | p(x)|�1 for &1�x�1, then

| p$(x)|�n2 for &1�x�1. (1)

In (1), equality is possible only at &1, +1 and holds only for
p(x)=ei#Tn(x), # # R, where Tn(x)=cos(n arc cos x) is the n th Chebyshev
polynomial of the first kind. This led W. Markov ([11]; much later
Bernstein arranged to get a German version of the paper published in [12]
so as to make the work more accessible) to look for the best possible
estimate for | p(k)(x*)| at any prescribed point x* # [&1, 1] if p # Pn and
| p(x)|�1 for &1�x�1.

Given k (1�k�n), and x* # [&1, 1] let p
*

be an extremal polynomial;
i.e.,

| p
*
(k)(x*)|=sup[ | p(k)(x*)| : p # Pn and max

&1�x�1
| p(x)|�1].
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It is easily seen that such a polynomial exists and that max&1�x�1 | p
*

(x)|
=1. W. Markov was able to characterize and even identify the extremal
polynomials for different values of x*. Let !1<!2< } } } <!n&k and '1<
'2< } } } <'n&k be the zeros of (x+1) T (k+1)

n (x)+kT (k)
n (x) and of

(x&1) T (k+1)
n (x)+kT (k)

n (x), respectively. They all lie in (&1, 1) and inter-
lace, i.e., &1<!1<'1<!2< } } } <!n&k<'n&k<1. W. Markov showed
that the polynomial Tn is extremal for x* belonging to any of the n&k+1
intervals

[&1, !1], ['1 , !2], ..., ['n&k&1 , !n&k], ['n&k , 1].

Besides, he noted that the points *j=(sec2(?�n)) !j+tan2(?�2n) lie in
(!j , 'j) for j=1, ..., n&k. He showed that at a point x* belonging to
(!j , *j] written as

x* :=\c+1
2 + !j+

c&1
2

, 1<c�1+2 tan2 ?
2n

,

the polynomial

Tn \2x+1&c
c+1 +#Tn \(1+!j)(x&x*)

1+x*
+!j+

is extremal. The point +j :=(sec2(?�2n)) 'j&tan2(?�2n) also lies in (!j , 'j)
for j=1, ..., n&k and at a point x* # [+j , 'j) the polynomial

Tn \(1&'j)(x&x*)
1&x*

+'j+ ( j=1, ..., n&k)

is extremal. There remain the intervals (*j , +j), j=1, ..., n&k. The equation

d k

dxk ((x2&1) T $n&1(x))=0

has a root &j in (*j , +j) for each j # [1, ..., n&k]. The polynomial Tn&1 is
extremal when x* coincides with any of the n&k points &1 , ..., &n&k .
Finally, for x* belonging to the intervals (*j , &j) and (&j , +j), the extremal
polynomial satisfies a differential equation of the form

1&( p(x))2=
(1&x2)(x&b)(x&c)

n2(x&a)2 ( p$(x))2.

Here a, b, and c are real constants which depend on a parameter. In par-
ticular, he proved the following.

198 ARSENAULT AND RAHMAN
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Corollary A. If p(x)=�n
&=0 a&x& satisfies the conditions of Theorem

A, then for 1�k�n we have

|ak |=
1
k!

| p(k)(0)|�{
1
k !

|T (k)
n (0)|

1
k !

|T (k)
n&1(0)|

if n&k is even

if n&k is odd,
(2)

max
&1�x�1

| p(k)(x)|�T (k)
n (1). (3)

An alternative approach to the problem considered by W. Markov was
developed by Voronovskaja in a long series of papers. The reader will find
a comprehensive account of her work in [18]. For a detailed discussion of
various extensions and generalizations of the (polynomial) inequalities of
the brothers Markov see [15, 16]. Numerous papers have been written on
the topic but [7, 13, 9, 4] are amongst those containing some of the most
striking contributions.

Remark 1. It was shown by Bernstein [1] that if p satisfies the condi-
tions of Theorem A, then

| p$(x)|�
n

- 1&x2
for &1<x<1. (4)

However, this well-known result which is certainly very elegant gives the
sharp bound for | p$(x)| only when x=cos((2&&1) ?�2n) (&=1, ..., n).

It is also of interest to estimate | p(x*)| at a point x* # R"[&1, 1] but
that was already done by Chebyshev (see [3, p. 7]). He showed that

| p(x*)|�|Tn(x*)| for x* # R"[&1, 1]. (5)

1.2. The Results of Erdo� s

The extremal polynomials p
*

defined and briefly discussed above have at
most one zero outside the interval [&1, 1]. As such, it should be possible
to improve upon all the preceding inequalities if the zeros of p are required
to stay away from [&1, 1]. As regards (1), Erdo� s [8; see in particular, the
second half of p. 311] proved the following.

Theorem B. Let p # Pn be such that | p(x)|�1 for &1�x�1. If the
zeros of p are all real and lie on R"(&1, 1), then

| p$(x)|�
1
2 \1&

1
n+

&n+1

} n for &1�x�1. (6)

199TWO POLYNOMIAL INEQUALITIES OF ERDO� S
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In (6) equality is possible only at &1, +1 and holds for

p(x) :=ei# nn

2n(n&1)n&1 (1+x)(1&x)n&1, # # R,

p(x) :=ei# nn

2n(n&1)n&1 (1+x)n&1 (1&x), # # R,

respectively.
The first such result providing an estimate for | p$(x)| at a given point

x # (&1, 1) was also proved by Erdo� s [8]. It is to be compared with (4)
and reads as follows.

Theorem C. Let p # Pn and suppose that | p(x)|�1 for &1�x�1. If
p(x) is real for real x and p(z){0 for |z|<1, then

| p$(x)|�4 - n�(1&|x| )2 for &1�x�1. (7)

Here - n cannot be replaced by any function of n tending to infinity
more slowly but the bound 4 - n�(1&|x| )2 is far from being best possible
for any x. The following result was presented in [14].

Theorem D. Let f be a rational function of degree n having neither zeros
nor poles in |z|<1. If f (x) is real for x # (&1, 1) and | f (x)|�1 for
&1<x<1, then

| f $(x)|�- (2�e) - n�(1&x2) for &1<x<1. (8)

For p satisfying the conditions of Theorem C, we have

| p$(x)|�- (1�e) - n�(1&x2) for &1<x<1. (9)

The estimate (8) was shows to be best possible for each x in (&1, 1) in
the sense that for any given ! in (&1, 1) there exists a rational function fn, !

satisfying the conditions of Theorem D for which

(1&!2) | f $n, !(!)|>- (2�e) - n&O(1�- n) as n � �.

The same cannot be said about (9) except when x=0. In that case it says
that if p(z)=�n

&=0 a&z& is a real polynomial of degree at most n not vanish-
ing in |z|<1 such that | p(x)|�1 for &1�x�1, then

|a1 |=| p$(0)|�- (1�e) - n. (10)

200 ARSENAULT AND RAHMAN
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It was shown in [14] that at least when - n # N there exists a polynomial
p of degree n satisfying the above conditions with

| p$(0)|=- (1�e) - n&
1

12 - e

1

- n
+O \ 1

n3�2+ .

For p satisfying the conditions of Theorem C and arbitrary x* # [&1, 1]
we obtain in this paper sharp estimate for | p$(x*)| in the spirit of
W. Markov's result, which will allow us, in particular, to replace (10) by
an inequality that cannot be improved for any n belonging to N (see
Corollary 2). We would have liked to do the same for | p(k)(x*)|, where k
is an arbitrary positive integer �n but for k # [2, ..., n&1] the problem
seems to be much harder. Besides, we obtain the exact bound for | p(x*)|
at an arbitrary point x* # R"[&1, 1], which is a result corresponding to
Chebyshev's inequality (5).

1.3. The Class ?n

We shall denote by P+
n the subclass of polynomials p # Pn which do not

vanish in the open unit disk and take positive values on (&1, 1). Note that
if p satisfies the conditions of Theorem C then p or &p belongs to P+

n .
For k=0, 1, ..., n let

qn, k(x) :=(1+x)k (1&x)n&k,
(11)

qn, k, *
(x) :=

nn

2nkk(n&k)n&k (1+x)k (1&x)n&k,

and denote by ?n the subclass of polynomials p # Pn which can be expressed
as �n

k=0 Ak(1+x)k (1&x)n&k, where Ak�0 for k=0, 1, ..., n.
At the end of Volume II of d'Adhe� mar's ``Principes d'Analyse'' there

appears a note, written by S. Bernstein (also see his Doctoral dissertation
``On the Best Approximations of Continuous Functions,'' Sections 58�60)
formulating a minimization problem for which he had to transform an
arbitrary polynomial p(x)=�n

&=0 a&x& into the form �m
k=0 Ak(1+x)k

(1&x)m&k, where m�n. Among other things he showed that a real poly-
nomial p # Pn does not change sign on (&1, 1) if and only if, for sufficiently
large m, it can be written as a sum �m

k=0 Ak(1+x)k (1&x)m&k whose coef-
ficients Ak have the same sign (also see [2; 3, p. 47]). The number m can
be taken to be n if in particular p(z){0 in |z|<1, i.e., P+

n �?n . This latter
fact was proved in [17, p. 355], where the following ``extension'' of
Theorem B was obtained.

Theorem B$. If p # ?n then

| p$(x)|� 1
2en max

&1�x�1
p(x) for &1�x�1. (12)

201TWO POLYNOMIAL INEQUALITIES OF ERDO� S
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1.3.1. The Polynomials Pn, a . We need to introduce for each a # (0, 1]
the polynomial

Pn, a(x) :=a \1+x
2 +

n

+*a
nn

22(n&2)n&2 \1+x
2 +

n&2

\1&x
2 +

2

, (13)

where *a is the largest number such that max&1�x�1 Pn, a(x)=1. This
polynomial which belongs to ?n plays an important role in our work.
Clearly, there is one and only one point {a in [&1, 1), where Pn, a assumes
the value 1. It may be noted that Pn, a satisfies

znPn, a(1�z� )#Pn, a(z) (14)

and that all its zeros lies on |z|=1. Indeed, it has a zero of multiplicity
n&2 at &1 and two simple complex conjugate zeros

\1<\*a
nn

22(n&2)n&2+a++{*a
nn

22(n&2)n&2&a

\i - 4*a(nn�22(n&2)n&2) a=
of unit modulus. We claim that {a<{b if 0<a<b�1. If this was not true
the n th degree polynomial Pn, b&Pn, a would have at least two zeros on
(&1, 1) and because of (14) at least two zeros on R"[&1, 1]. Together
with a zero of multiplicity n&2 at &1 it adds up to at least n+2 zeros.
But then Pn, b(z)&Pn, a(z) would be identically zero which is obviously not
the case. Counting the zeros of Pn, b&Pn, a also shows that if b>a then
Pn, b(x)>Pn, a(x) on [{b , 1] and because of (14) also on [1, 1�{b].

Remark 2. It is clear that {1 is determined by the system

qn, n, *
(x)+*1 qn, n&2, *

(x)=1

q$n, n, *
(x)+*1 q$n, n&2, *

(x)=0.

Eliminating *1 we see that {1 is a root of the equation

\1&
1&x

2 +
n

=1&
n
2

1&x
2

.

In order to estimate 1&{1 from below we set (1&x)�2=:�n which leads
us to

\1&
:
n+

n

+
:
2

=1;

202 ARSENAULT AND RAHMAN
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i.e.,

e&:+
:
2

&1+{\1&
:
n+

n

&e&:==0. (15)

At the point :0 (=1.59362. . .), where e&:+:�2&1 vanishes, the left-hand
side of (15) is negative and so

(1&{1) n�2:0=3.18724. . . . (16)

1.4. Analogue of Chebyshev's Inequality

The following result is to be compared with Chebyshev's inequality (5).

Theorem 1. Let p # ?n . If |p(x)|�1 for &1�x�1, then for n�4

| p(x)|�{
max[&qn, n&1, *

( |x| ), Pn, 1( |x| )]

|x|n

for 1<|x|<
n

n&2
,

for |x|�
n

n&2
,

(17)

where Pn, 1 is as in (13).

Remark 3. For each x # R"[&1, 1] we can find a polynomial p # P+
n

bounded by 1 on [&1, 1] for which the above bound for | p(x)| is attained.
This means that (17) cannot be improved even if we restrict ourselves to
the subclass P+

n .

1.5. Extension of an Observation of Laguerre

It was observed by Laguerre (see [6]) that if &1, +1 are consecutive
zeros of a polynomial p # Pn with only real zeros then p$(x){0 for
x # (&1, &1+2�n) _ (1&2�n, 1). Note that p$(x) can vanish at a point x$
in (&1, 1) only if | p(x$)|=max&1�x�1 | p(x)|. The following result, closely
related to Theorem 1, constitutes, therefore, a nontrivial extension of
Laguerre's observation.

Theorem 2. Let p # ?n . If p(1)=0 and max&1�x�1 | p(x)|=M, then

p(x)�qn, n&1, *
(x) p \1&

2
n+<M for x # \1&

2
n

, 1+ . (18)

The estimate is sharp and cannot be improved even if we restrict ourselves to
polynomials with only real zeros.

Since, according to (18), the maximum of p(x) cannot be attained on
(1&2�n, 1), the derivative p$ cannot vanish there. It may be observed that

203TWO POLYNOMIAL INEQUALITIES OF ERDO� S
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this does not depend on the value of p at &1. However, if p had a zero at
&1, then by symmetry p$(x) would be different from zero in
(&1, &1+2�n) as well.

1.6. Upper Bound for p$(x) at a Point x in [&1, 1]

In order to state our pointwise estimates for p$(x) we need to introduce
some further notations. For 1�m�n let

!n, m :=
&n2+m(2n&1)&- m2+4mn(n&m)

n2 , (19)

'n, m :=
&n2+n+m(2n&1)&- (n&m)2+4mn(n&m)

n2 (20)

and

tn, m(x) :=
nx2+(n&2m+1) x&1
(n&1) x+n&2m+1 \x{&1+

2(m&1)
n&1 + . (21)

It is easily checked that !n, 1= &1, 'n, n=1, !n, m<'n, m<!n, m+1<'n, m+1

for 1�m�n&1. Besides, for 0�k�n, &1<t<1, let

rn, k(t; x) :=
q$n, k(x)
qn, k(t)

. (22)

Notice the lack of any obvious symmetry in the location of the points !n, m ,
'n, m .

Theorem 3. Let En(x) :=sup[ p$(x) : p # ?n , p(u)�1 for &1�u�1].
Then

En(x)=q$n, m, *
(x) if !n, m�x�'n, m , 1�m�n, (23)

whereas with tn, m , rn, m as above

En(x)=rn, m(tn, m(x); x) if 'n, m&1<x<!n,m , 2�m�n. (24)

Further,

p$(x)�&En(&x) for all x # [&1, 1]. (25)

The estimates are all sharp. Polynomials for which the bounds are attained
have all their zeros on R"(&1, 1).

204 ARSENAULT AND RAHMAN
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Remark 4. Our proof of Theorem 3 will show that for Eq. (23) or (24)
to hold we need p(u)�1 to be satisfied at just one point, depending on x
and on n.

1.7. Extension of (6) to Polynomials in ?n

Although the bound in (12) is asymptotically the best possible it is not
sharp for any n. As a simple application of Theorem 3, we shall obtain the
following.

Corollary 1. If p # ?n and | p(x)|�1 for &1�x�1, then (6) holds.

1.8. Estimates for Some of the Maclaurin Coefficients

For n, k both odd or both even, satisfying k(k+1)<n<(k+1)(k+2),
let

Qn, k(x) :=(1+x)(n+k)�2

_(1&x)(n&k&2)�2 \1&(k+1)
(k+1)2&(n&1)

2(k+1)2&n
x+

and

Qn, k, *
(x) :=

(k+1)n&1

(k+2)(n+k)�2 k(n&k&2)�2

2(k+1)2&n
(k+1)2&1

Qn, k(x).

From Theorem 3 we shall deduce the following result.

Fig. 1. The function E4(x).
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TABLE I

En(0) for the First Few Values of n

n En(0)

1 1
2=0.5

2 1
2=0.5

3 8
9=0.8�

4 32
27=1.185

5 32
27=1.185

6 729
512=1.42382812. . .

7 2470629
1600000=1.54414312. . .

8 6561
4096=1.60180664062 . . .

9 59049
32768=1.802032470703 . . .

10 59049
32768=1.802032470703 . . .

Corollary 2. Let k(k+1)�n<(k+1)(k+2). If p(x) :=�n
&=0 a&x&

satisfies the conditions of Theorem 3, then

|a1 |�

|q$n, (n+k)�2, *
(0)| if n=k(k+1), where k is even,

|q$n, (n+k+1)�2, *
(0)| if either n=k(k+1)+2j&1,

where k is even,

1� j�k+1, or n=k(k+1)+2j,
where k is odd, 0� j�k,

|q$n&1, (n+ j&1)�2, *
(0)| if n is of the form j 2+1, where j # N,

|Q$n, k, *
(0)| if n does not fall in any

of the preceding categories.

The estimate cannot be improved even if p satisfies the conditions of
Theorem B.

Remark 5. The above bound for |a1 | is the sharp version of (10). It is
instructive to compare Corollaries A and 2. In the former, the bound for
|a1 | is n if n&1 is even and n&1 if n&1 is odd. In the latter, the
dependence of the bound on n is far more complicated.

Although it would be nice to obtain, in the situation of Corollary 2, the
sharp upper bound for |a& | for each & it does not seem to be a simple mat-
ter, except when & # [0, n].

If &=0 then |a0 |=a0=p(0)�1, the bound being clearly sharp.
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If &=n then writing p(x) in the form �n
k=0 Ak(1+x)k (1&x)n&k, where

Ak�0 for 0�k�n, we see that

|an |=|An&An&1+An&2& } } } |

�An+An&1+An&2+ } } }

=p(0)=a0�1.

Simple examples like 1&xn, (1&x2)n�2 show that the bound is attained when
n is even. The same can be said when n is odd, except that the example is not
so obvious. In Section 2.2.5 we will show that there exists a polynomial

pn, (n&1)�2, %(x) :=(1&x)(n&1)�2 (1+x)(n&3)�2

_(1+x2&2x cos %), 0<%<?,

belonging to P+
n whose maximum on [&1, 1] is attained at the origin. Thus

pn, (n&1)�2, %(0)=1= max
&1�x�1

pn, (n&1)�2, %(x).

Since the zeros of pn, (n&1)�2, %(z)=�n
&=0 a&z& all lie on |z|=1 we must have

|an |=|a0 |=a0=pn, (n&1)�2, %(0)=1.

We also obtain best possible bounds for a2 . Note that a2 is the same as
1
2 p"(0).

1.9. Lower Bound for p"(0)

It is fairly easy to find the exact lower bound for p"(0)�max&1�x�1 p(x)
for p # ?n . The following result holds.

Theorem 4. Let p # ?n . If p(0)�1, then

p"(0)�{&n
&n+1

if n is even,
if n is odd.

(26)

The example p(x) :=(1&x2)[n�2] shows that the estimate is sharp for
even as well as for odd n. It cannot be improved even if, instead of p(0)�1,
we assume | p(x)|�1 for &1�x�1.

1.10. Upper Bound for p"(0)

Clearly, any polynomial p(x)=�n
k=0 Ak(1+x)k (1&x)n&k belonging to

?n can be written as the Riemann�Stieltjes integral

p(x)=|
n

0
(1+x)t (1&x)n&t d+(t), (27)
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where

+(t)={
0
A0

A0+ } } } +Ak&1

A0+ } } } +An

for t=0
for 0<t<1
for k&1�t�k, 2�k�n,
for t=n.

As regards our upper bound for p"(0) we find it convenient to extend the
class ?n by allowing + in (27) to be a step function with nonnegative jumps
at an arbitrary set of points

0=+0<+1< } } } <+N=n,

where N # N. By introducing additional jump points with zero jump we
may assume +N&k=n&+k for all k. We denote by Fn the class ?n so
generalized.

In order to present our upper bound for the second derivative at the
origin we need to introduce certain parameters and make some preliminary
observations.

For n�4 and - 2�c�- 3 let

#n(c) :=c - n log
- n+c

- n&c
=2c2 :

�

k=0

1
2k+1 \

c2

n +
k

,

4n(c) :=� #n(c)
#n(c)&4

.

As c increases #n(c) increases and 4n(c) decreases. Clearly,

2c2 \1+
1
3

c2

n
+

1
5

c4

n2+<#n(c)<
2c2n

n&c2 ,

(28)
c2n

(c2&2) n+2c2<(4n(c))2<
c2+ 1

3 (c4�n)+ 1
5 (c6�n2)

c2&2+ 1
3 (c4�n)+ 1

5 (c6�n2)
.

In particular,

(4n(- 3&9�5n))2&(- 3&9�5n)2<0,

(4n(- 2))2&(- 2)2>
n
2

&2�0,

and so 4n(c)&c must have one and only one zero in (- 2, - 3&9�5n)
which we denote by cn .
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Theorem 5. Let n�4 be an integer. (i) There is one and only one value
of c (call it c

* , n) in (- 2, cn) such that for some positive : (say :
* , n) the two

equations

\1+c�- n

1&c�- n+
2: - n

=

(4:2&1) - n log
1+c�- n

1&c�- n
+8:

(4:2&1) - n log
1+c�- n

1&c�- n
&8:

, (29)

\1+c�- n

1&c�- n+
2: - n

=
2:+c
2:&c

(30)

are simultaneously satisfied. (ii) For each f # Fn such that
( f (x)+ f (&x))�2�1 at x=(1�- n) c

* , n , we have

f "(0)�
4:2&1

2:
- 4:2&c2 \1&

c2

n +
&n�2

} n (c=c
* , n , :=:

* , n). (31)

Remark 6. In particular, the above estimate for f "(0) holds if f (x)�1
at x=\(1�- n) c

* , n . Our proof will show that (31) cannot be improved
even if f (x)�1 for all x # [&1, 1]. Indeed, there exists a function f # Fn

bounded by 1 on [&1, 1] for which (31) becomes an equality.

For each n�4 the constants c
* , n , :

* , n can be calculated numerically
with little difficulty but it is desirable to have a bound which does not
require any calculations on the part of the reader. We shall prove the
following.

Theorem 5$. If c
*

(=1.729228319 . . . ) is the unique root of

h(c) :=e2c2�- c2&2&
1+- c2&2

1&- c2&2
=0 (32)

in (- 2, - 3) then

(a) c
* , n<c

*
for all n�4, whereas

(b) c
*

&1.35�(n&3)<c
* , n for all n�410.

Further, for each f # Fn , where n�4, we have

f "(0)<0.199631037. . . \1&
c2

*
n +

&n�2

} n } max
&1�x�1

f (x). (31$)
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Remark 7. It is easily seen that the quantity 0.19963. . . (1&c2

*
�n)&n�2

appearing in (31$) is less than 0.89032. . . exp(9�4(n&3)) which is itself less
than 0.89433. . . if n�500.

Remark 8. The constant 1.35 and the number 410 appearing in the
statement of the preceding theorem have no special significance. Although
it is not obvious in itself, it follows trivially from (a) and (b) that

c
* , n � c

*
as n � �.

Besides (see (54) below and (28))

:
* , n � :

*
:=

1
2

c
*

- c2

*
&2

as n � �.

Remark 9. The upper bounds for f "(0) contained in (31) and (31$) are
valid for functions belonging to the class Fn which is larger than ?n and it
is reasonable to ask how good they are if f is restricted to ?n . Table II con-
tains numerically calculated lower bounds for

1
n

sup
f # ?n

f "(0)
max&1�x�1 f (x)

for certain values of n. In each case, the polynomial providing the bound
is of the form

pn, k(x) :=
qn, k(x)+qn, n&k(x)

max&1�x�1[qn, k(x)+qn, n&k(x)]
.

TABLE II

Numerical Estimates for (1�n) supf # ?n
f "(0)�max&1�x�1 f (x)

Compared with (1�n) sup f # Fn
f "(0)�max&1�x�1 f (x)

n k (1�n) p"n, k(0) 0.19963. . . (1&c2

*
�n)&n�2

50 19 0.87582456. . . 0.93277124. . .
100 41 0.87749734. . . 0.91086590. . .
200 88 0.88499485. . . 0.90043291. . .
300 135 0.88809300. . . 0.89702816. . .
500 231 0.88705670. . . 0.89432995. . .

1000 473 0.88844271. . . 0.89232103. . .
5000 2439 0.88998349. . . 0.89072291. . .

10000 4913 0.89025089. . . 0.89052370. . .
50000 24806 0.89030251. . . 0.89036443. . .
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2. Proofs of Theorems 1 and 2

To start with we present

2.1. Proof of Theorem 2

Since p # ?n and p(1)=0 we have p(x) :=�n&1
k=0 Ak qn,k(x), where Ak�0

for k=0, 1, ..., n&1. Now note that if 1&2�n<x<1, then for
k=0, 1, ..., n&1,

qn, k(x)
qn, k(1&2�n)

=\n
2+

n (1+x)k (1&x)n&k

(n&1)k

�\n
2+

n (1+x)n&1 (1&x)
(n&1)n&1 =qn, n&1, *

(x)

and so

p(x)= :
n&1

k=0

Ak
qn, k(x)

qn,k(1&2�n)
qn, k \1&

2
n+

�qn, n&1, *
(x) :

n&1

k=0

Ak qn,k \1&
2
n+

=qn, n&1, *
(x) p \1&

2
n+ .

At each point of (1&2�n, 1) equality holds for Mqn, n&1, *
.

Remark 10. The preceding argument also shows that if p # ?n and
p(1)=0, then | p(z)|�|qn, n&1, *

(z)| p(1&2�n) for |z&1&2�n(n&2)|�
2(n&1)�n(n&2).

2.2. Proof of Theorem 1

It is clearly enough to prove (17) for 1<x<�.

2.2.1. Lower Bound for p(x) on (1, n�(n&2)). Let p(1)=a. For
x # (1, n�(n&2)) we have

p(x)=a \1+x
2 +

n

+ :
n&1

k=0

Ak(1+x)k (1&x)n&k

�a \1+x
2 +

n

+ :
0�k�n&1, n&k odd

Ak(1+x)k (1&x)n&k

=a \1+x
2 +

n

&xn :
0�k�n&1, n&k odd

Ak \1+
1
x+

k

\1&
1
x+

n&k

�a \1+x
2 +

n

&xn :
n&1

k=0

Ak(1+t)k (1&t)n&k,
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where t :=1�x # ((n&2)�n, 1). Note that

:
n&1

k=0

Ak(1+} )k (1&} )n&k=p( } )&a \1+}
n +

n

belongs to ?n and vanishes at the point 1. Applying Theorem 2 we con-
clude that for (n&2)�n<t<1,

:
n&1

k=0

Ak(1+t)k (1&t)n&k�qn, n&1, *
(t) { p \1&

2
n+&a \1&

1
n+

n

= .

Consequently, if x # (1, n�(n&2)) then

p(x)�a \1+x
2 +

n

&xnqn, n&1, * \1
x+ {p \1&

2
n+&a \1&

1
n+

n

=
=qn, n&1, *

(x) p \1&
2
n++a \1+x

2 +
n

&a \1&
1
n+

n

qn, n&1, *
(x) (33)

�qn, n&1, *
(x) p(1&2�n)�qn, n&1, *

(x). (34)

2.2.2. Upper Bound for p(x) on (1, 1�{1) as a Function of p(1). The num-
ber {a and the polynomial Pn, a appearing in this section and the next have
been defined for a # (0, 1] in 1.3.1. Assuming that p(1)=a, we obtain the
sharp upper bound for p(x) on (1, 1�{a]. For x # (1, 1�{a] we clearly have

p(x)=a \1+x
2 +

n

+ :
n

l=1

An&l (1+x)n&l (1&x) l

�a \1+x
2 +

n

+ :
[n�2]

j=1

An&2j (1+x)n&2j (1&x)2j

=a \1+x
2 +

n

+xn :
[n�2]

j=1

An&2j (1+t)n&2j (1&t)2j,

where t :=1�x # [{a , 1). Now we have to determine how large (the expres-
sion) .(t) :=�[n�2]

j=1 An&2j (1+t)n&2j (1&t)2j can be at a point t # [{a , 1) if
it does not exceed 1&a((1+{a)�2)n at the point {a . The answer is

.(t)� max
1� j�[n�2]

(1+t)n&2j (1&t)2j

(1+{a)n&2j (1&{a)2j :
[n�2]

j=1

An&2j (1+{a)n&2j (1&{a)2j

=
(1+t)n&2 (1&t)2

(1+{a)n&2 (1&{a)2 :
[n�2]

j=1

An&2j (1+{a)n&2j (1&{a)2j

�
(1+t)n&2 (1&t)2

(1+{a)n&2 (1&{a)2 {1&a \1+{a

2 +
n

= .

212 ARSENAULT AND RAHMAN



F
ile

:6
40

J
29

05
17

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

23
57

Si
gn

s:
10

33
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

Recalling that

a \1+{a

2 +
n

+*a
nn

2n22(n&2)n&2 (1+{a)n&2 (1&{a)2=1,

we obtain

.(t)�*a
nn

2n22(n&2)n&2 (1+t)n&2 (1&t)2

and

p(x)�a \1+x
2 +

n

+xn*a
nn

2n22(n&2)n&2 (1+t)n&2 (1&t)2

=a \1+x
2 +

n

+*a
nn

22(n&2)n&2 \1+x
2 +

n&2

\1&x
2 +

2

=Pn, a(x).

2.2.3. Inequality (17) for 1<x<n�(n&2). In Section 1.3.1 it was shown
that {a�{1<1�{1�1�{a and that Pn,a(x)�Pn, 1(x) for {1�x�1�{1 . Hence

p(x)�Pn, 1(x) for 1<x�1�{1 . (35)

In view of (16), the lower bound in (34) and the upper bound in (35) imply
that

| p(x)|�max[&qn, n&1, *
(x), Pn, 1(x)] for 1<x<n�(n&2). (36)

It is easily seen that the equation

qn, n&1, *
(x)+Pn, 1(x)=0

has a root u in (1, n�(n&2)) and that the bound in (36) is attained on
(1, u] by Pn, 1 , whereas qn, n&1, *

is extremal on [u, n�(n&2)). On
[&u, &1) the bound is attained by the polynomial Pn, 1(&x) and on
(&n�(n&2), &u] by qn, 1, *

.

2.2.4. Inequality (17) for |x|�n�(n&2). It is much easier to obtain the
sharp estimate for | p(x)| when |x|�n�(n&2). Indeed, for all x � [&1, 1]
we have

| p(x)|� :
n

k=0

Ak |1+x|k |1&x|n&k

=|x|n :
n

k=0

Ak \1+
1
x+

k

\1&
1
x+

n&k

=|x|n p(1�x)�|x|n.
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2.2.5. Sharpness of (17) for |x|�n�(n&2). It remains to show that at
each point x # R"(&n�(n&2), n�(n&2)) the bound |x|n is attained for
some p # P+

n . Since polynomials in P+
n which have all their zeros on

|z|=1 satisfy znp(1�z� )#\p(z) it is enough to show that given any point
x0 # [&1+2�n, 1&2�n] there exists a polynomial p # P+

n having all its
zeros on |z|=1 such that p(x0)=max&1�x�1 p(x). Besides, due to
obvious symmetry we only need to consider x0 # [0, 1&2�n].

First let x0=1&2j�n, where 1� j�n&1. The polynomial qn, n& j has the
desired property.

Now let x0 # (1&2( j+1)�n, 1&2j�n) for some j # [1, ..., n&3] and con-
sider the family of polynomials

pn, j, %(x) :=(1&x) j (1+x)n& j&2 (1+x2&2x cos %) (0�%�?).

The derivative p$n, j, % vanishes at a point in (&1, 1) if and only if

fn, j, %(x) :=&nx3+(n&2j&2+2(n&1) cos %) x2

+(&n+4&2(n&2j&2) cos %) x+n&2j&2&2 cos %=0.

It is well known (see, for example, [5, Section 43]) that the cubic

ax3+bx2+cx+d

has one and only one real zero if and only if

2 :=&4ac3+b2c2&4b3d+18abcd&27a2d 2<0.

Writing

n&2j&2=(n&4) u, cos %=t,

where u and t belong to [&1, 1], the cubic fn, j, % takes the form

qn, u, t(x) :=&nx3+((n&4) u+2(n&1) t) x2

&(n&4)(1+2ut) x+(n&4) u&2t.

Its discriminant 2=2(t) equals 4(t2&1) $(t), where

$(t) :=4(n&1)2 [4(n&1)+(n&4)2 u2] t2

&4(n&4) u[(n+2)2 (n&1)+(n+1)(n&4)2 u2] t

+(n&4)2 [n(n&4)+2(n2+10n&2) u2+(n&4)2 u4].
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Hence for t # (&1, 1) the sign of 2(t) is opposite to that of $(t). The dis-
criminant of the quadratic $(t) is

64n(n&4)3 [(n&4) u2&(n&1)]3

which is negative if n>4 and then the sign of $(t) is the same as that of

n(n&4)+2(n2+10n&2) u2+(n&4)2 u4

which is positive if n>4. Hence 2(t)<0 for t # (&1, 1) if n>4. If n=4
then 2(t)=1728(t2&1) t2<0 for t # (&1, 1). Thus 2(t)<0 on (&1, 1) for
all admissible values of n.

It follows that for % # [0, ?] the derivative p$n, j, % has one and only
one real zero x$% other than \1 which, by the Gauss�Lucas theorem
must lie on (&1, 1). Since x$% is a continuous function of %, taking the
value &1+2( j+1)�n at 0 and &1+2j�n at ? it takes every intermediate
value for some % in (0, ?). In other words, every value x0 in
(1&2( j+1)�n, 1&2j�n) is a zero of p$n, j, % for some %, say %0 in (0, ?).
Clearly, then pn, j, %0

(x0)=max&1�x�1 pn, j, %0
(x). The points 1&2j�n,

1� j�n&1, and the intervals (1&2( j+1)�n, 1&2j�n), 1� j�n&3,
together cover [0, 1&2�n] completely.

3. Proof of Theorem 3

3.1. The Upper Bound for p$(x)

3.1.1. The Case m=n of (23). If !n, n=1&2�n�x�1 then q$n,k(x)�0
for 0�k�n&1 and so

p$(x)= :
n

k=0

Akq$n,k(x)�Anq$n,n(x)=
p(1)

qn, n(1)
q$n, n(x)=p(1) q$n, n, *

(x).

Since equality holds in the above inequality for the polynomial qn, n, *
, it

follows that En(x)=q$n, n, *
(x) if x # [!n, n , 'n, n]. Note that p$(x)�q$n, n, *

(x)
for !n, n�x�1 even if we only assume p(1)�1.

3.1.2. Proof of (23) for 1�m�n&1.

Step 1. For each t in (&1, 1) we can write

p$(x)= :
n

k=0

rn, k(t; x) } Ak qn, k(t),

215TWO POLYNOMIAL INEQUALITIES OF ERDO� S



F
ile

:6
40

J
29

05
20

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

20
71

Si
gn

s:
88

8
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

where rn, k is as in (22). Hence

p$(x)� inf
&1<t<1

max
0�k�n

rn, k(t; x) } p(t). (37)

In order to obtain the desired upper bound it is therefore sufficient to show
that if !n, m�x�'n,m , 1�m�n&1, then

max
0�k�n

rn, k \&1+
2m
n

; x+=rn, m \&1+
2m
n

; x+=q$n, m, *
(x). (38)

Remark 11. Since rn, 0(t; x) :=&n((1&x)n&1�(1&t)n)�0 for all x #
[&1, 1], whereas rn,n(t; x) :=n((1+x)n&1�(1+t)n)�0 for all x # [&1, 1]
the maximum of rn,k(&1+2m�n; x) for k # [0, 1, ..., n] is the same as
max1�k�n rn, k(&1+2m�n; x).

Step 2. By definition,

rn, k(t; x) :=
(1+x)k&1 (1&x)n&k&1 (2k&n&nx)

(1+t)k (1&t)n&k for 1�k�n&1.

Hence for 2�k�n&1,

rn, k(t; x)&rn, k&1(t; x)=
2(1+x)k&2 (1&x)n&k&1

(1+t)k (1&t)n&k+1 Rn, k(t; x), (39)

where

Rn, k(t; x) :=(n&2k+1) t+1&(n&2k+1&(n&1) t) x&nx2. (40)

In particular, for 1�m�n&1 we have

Rn, k \&1+
2m
n

; x+=
1
n

[(n&2k)(2m&n)+2m

+(2m(n&1)&2n(n&k)) x&n2x2].

It is easily seen that

Rn, k \&1+
2m
n

; &1+=&
4m
n

(k&1)<0,

whereas

Rn, k \&1+
2m
n

; &1+
2(k&1)

n +=
4
n2 (n&m)(k&1)>0.
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Further, Rn, k(&1+2m�n; x) � &� as x � � and, therefore,
Rn, k(&1+2m�n; } ) has one and only one zero,

xn, k, m :=
m(n&1)&n(n&k)&- n2(m&k)2+m2+2mn(2n&k&m)

n2 ,

in (&1, &1+2(k&1)�n). Thus Rn,k(&1+2m�n; x) is negative for x<
xn, k, m and positive at least for xn, k, m<x�&1+2(k&1)�n. It is also
positive for &1+2(k&1)�n<x�&1+2k�n since rn,k(&1+2m�n; x)�0
for x� &1+2k�n, whereas rn,k&1(&1+2m�n; x)<0 for x>&1+
2(k&1)�n.

The definition of xn,k,m as the zero of rn,k(&1+2m�n; } )&
rn, k&1(&1+2m�n; } ) in (&1, &1+2(k&1)�n) extends to k=n, including
n=2. Indeed, a similar calculation shows that rn, n(&1+2m�n; x)&
rn, n&1(&1+2m�n; x) is negative for &1<x<&1+2m(n&1)�n2=: xn, n, m

and positive for xn, n, m<x<1.
Next we note that if we set xn, 1, m :=&1, xn, n+1, m :=1, then

xn, k, m<xn, k+1, m for 1�k�n. (41)

This is clearly true for k # [1, n]. Besides, it is easily checked that

xn, n&1, m=
m(n&1)&n&- n2(n&m&1)2+m2+2mn(n&m+1)

n2

< &1+
2m(n&1)

n2 =xn, n, m .

If 2�k�n&2, then

Rn, k+1 \&1+
2m
n

; xn, k, m+
=Rn, k+1 \&1+

2m
n

; xn, k,m+&Rn, k \&1+
2m
n

; xn,k, m+
=

1
n

[2(2m&n)+2nxn, k, m]

=
2
n2 [n(k&m)&m&- (m&k)2 n2+m2+2mn(2n&k&m)]<0.

As such, xn, k, m cannot belong to [xn, k+1,m , &1+2(k+1)�n]. Since
xn, k, m<&1+2(k+1)�n we must have xn, k, m<xn, k+1, m .
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Step 3. Now we claim that if xn, k, m�x�xn, k+1, m , where 1�k�n,
then

rn, j \&1+
2m
n

; x+�rn,k \&1+
2m
n

; x+ for all j. (42)

First, let j>k. Then for j�l>k the inequality

rn, l&1 \&1+
2m
n

; x+�rn, l \&1+
2m
n

; x+
holds for x�xn, l, m and so certainly for x�xn, k+1, m . Now suppose, if
possible, that (42) fails for some x$ # [xn,k, m , xn,k+1, m] and some j<k.
Let j* be the largest such j. Since rn, j*(&1+2m�n; x)<0 for
x # (&1+2j*�n, 1], whereas rn, k(&1+2m�n; x)�0 for x in (&1, &1+
2k�n] and so for x # [xn, k, m , xn, k+1,m], the point x$ must lie in

[xn, k,m , xn,k+1, m] & [&1, &1+2j*�n]

which (if not empty) is contained in [xn,k,m , &1+2j*�n]; but then
rn, j*+1(&1+2m�n; x$)�rn, j*(&1+2m�n; x$)>rn, k(&1+2m�n; x$). This is
a contradiction since j* was supposed to be the largest integer (<k) for
which (42) does not hold for all x in [xn, k, m , xn, k+1, m].

In particular, if xn,m,m=!n, m�x�'n, m=xn,m+1, m then

rn, k \&1+
2m
n

; x+�rn, m \&1+
2m
n

; x+ for all k;

i.e., (38) holds. From (37) and (38) it really follows that if p # ?n and
1�m�n&1, then for !n, m�x�'n, m we have

p$(x)�q$n, m, *
(x) } p \&1+

2m
n +�q$n, m, *

(x) max
&1�x�1

p(x). (23$)

Equality holds in both the equalities in (23$) when p is a positive multiple
of qn, m .

According to the first inequality in (23$), if p # ?n then the sharp
inequality ``p$(x)�q$n, m, *

(x) for !n, m�x�'n,m , 1�m�n&1'' contained
in (23) holds even if we only assume p(&1+2m�n)�1.

3.1.3. Proof of (24). In view of (37) it suffices to show that if
'n, m&1<x<!n, m , 2�m�n, then

inf
&1<t<1

max
0� j�n

rn, j (t; x)=rn, m(tn, m(x); x). (43)
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Step 1. Let x # (&1, 1&2�n) be arbitrary but fixed. If k is the
smallest integer such that k&1>n(1+x)�2, or equivalently &1+(2k&2)�
n�x<&1+2(k&1)�n, then rn, j (t; x)�0 for 0� j�k&2 and so

M(t; x) := max
0� j�n

rn, j (t; x)= max
k&1� j�n

rn, j (t; x).

Since x{\1, formula (39), where Rn, k is defined in (40), is valid for all
k # [1, ..., n]. We note that for j&1>n(1+x)�2,

lim
t a &1

Rn, j (t; x)=(2j&n&nx)(1+x)>0,

whereas

lim
t A +1

Rn, j (t; x)=[n(1+x)&2( j&1)](1&x)<0.

Since Rn, j (t; x) is linear in t it follows that there exists one and only one
number tn, j (x) such that

Rn, j (tn, j (x); x)=0 ( j&1>n(1+x)�2). (44)

We set tn, k&1(x) :=1, tn, n+1(x) :=&1. Then tn, j (x) is defined for
k&1� j�n+1 and we have

tn, n+1(x) :=&1<tn, n(x)<tn, n&1(x)< } } } <tn, k(x)<1=: tn, k&1(x). (45)

To see this, note that for k� j�n, we have

Rn, j (x; x)=1&x2>0

and, therefore, x<tn, j (x). It follows that if k� j<n, then

Rn, j+1(tn, j (x); x)=Rn, j+1(tn, j (x); x)&Rn, j (tn, j (x); x)

=&2(tn, j (x)&x)

is negative. Hence, tn, j+1(x)<tn, j (x) for k&1� j�n.

Step 2. As seen from (45), the points tn, n+1(x), tn, n(x), ..., tn, k(x),
tn, k&1(x) constitute a partition of the interval [&1, 1] which defines
n&k+2 subintervals [tn, j+1(x), tn, j (x)], k&1� j�n. We claim that if
t # [tn, j+1(x), tn, j (x)], then

max
&�k&1

rn, &(t; x)=rn, j (t; x). (46)
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Indeed, by the definition of tn, }(x) as the root of Rn, }(t; x)=0, we have

rn, j (t; x)�rn, j&1(t; x) for &1�t�tn, j (x),

rn, j&1(t; x)�rn, j&2(t; x) for &1�t�tn, j&1(x),

and so for &1�t�tn, j (x), etc.

Further,

rn, j (t; x)�rn, j+1(t; x) for tn, j+1(x)�t�1,

rn, j+1(t; x)�rn, j+2(t; x) for tn, j+2(x)�t�1,

and so for tn, j+1(x)�t�1, etc.

Hence, (46) holds for t # [tn, j+1(x), tn, j (x)].

Step 3. We also need to note that

&1+
2(m&1)

n
<tn, m(x)<&1+

2m
n

if x # ('n, m&1 , !n,m), 2�m�n.

(47)

Recall that !n, m=xn, m, m , 'n, m&1=xn, m, m&1. By the definition of xn,m, m we
have

Rn, m \&1+
2m
n

; x+<0 if x # (&1, xn, m, m),

and so

tn,m(x)<&1+2m�n.

Besides, if x # (xn, m, m&1 , &1+2m�n] then Rn, m(&1+2(m&1)�n; x)>0,
which implies that

&1+
2(m&1)

n
<tn, m(x) for xn,m, m&1<x<xn, m, m<&1+2m�n.

Step 4. Now we are ready to prove (43). Assume
x # (xn, m, m&1 , xn, m, m) to be arbitrary but fixed and recall that

M(t; x) := max
0� j�n

rn, j (t; x)= max
k&1� j�n

rn, j (t; x),

where k is the smallest integer such that k&1>n(1+x)�2. By definition,

M(t; x)�rn, m(t; x)=
q$n, m(x)
qn, m(t)

(&1<t<1).
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The function qn, m(t) is increasing on (&1, &1+2m�n] and so (see (45),
(47)) on (&1, tn, m(x)]. Hence q$n, m(x)�qn,m(t) decreases to q$n,m(x)�
qn, m(tn, m(x)) (=rn, m(tn,m(x); x)) as t increases to tn, m(x). In particular,

M(t; x)�rn, m(tn,m(x); x) for t # (&1, tn, m(x)], (48)

where (see (46)) equality holds only for t=tn,m(x). Again by definition,

M(t; x)�rn, m&1(t; x)=
q$n, m&1(x)
qn,m&1(t)

(&1<t<1).

The function qn, m&1(t) is decreasing on [&1+2(m&1)�n, 1) and so (see
(47)) on [tn, m(x), 1). This implies that q$n,m&1(x)�qn,m&1(t) is an increasing
function of t on [tn,m(x), 1). In particular,

M(t; x)�rn, m&1(tn, m(x); x) for t # [tn, m(x), 1),

where (see (46)) equality holds only for t=tn, m(x). By definition, tn, m(x) is
the root of Rn, m(t; x)=0; i.e., rn, m&1(tn, m(x); x)=rn, m(tn, m(x); x). Hence,

M(t; x)�rn, m(tn,m(x); x) for t # [tn, m(x), 1), (49)

Inequalities (48) and (49) together imply (43).
From (37) and (43) it really follows that if p # ?n and 2�m�n, then for

'n, m&1<x<!n, m we have

p$(x)�rn, m(tn, m(x); x) } p(tn, m(x))�rn,m(tn, m(x); x) } max
&1�x�1

p(x). (24$)

Equality can hold in both the inequalities for the same polynomial in ?n .
Indeed, we show that for each given x0 in ('n, m&1 , !n, m) there exists a poly-
nomial p of degree at most n whose zeros are all real, p(x)>0 for
&1<x<1, max&1�x�1 p(x)=1=p(tn, m(x0)), and

p$(x0)=rn,m(tn,m(x0); x0). (50)

Step 5. For x in ('n,m&1 , !n,m), let

%(x) :=&
(n&1) t+n&2m+1

nt2+(n&2m+1) t&1
(t=tn, m(x)).

Not only does (47) hold, but it can be easily seen that as x increases from
'n, m&1 to !n, m the quantity tn,m(x) increases from &1+2(m&1)�n to
&1+2m�n and %(x) increases from &1 to +1. Note that %(x)=0 if and
only if t=&1+2(m&1)�(n&1).
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Given any x0 in ('n, m&1, !n, m) let

qn, m, %0
(x) :=(1+x)m&1 (1&x)n&m (1+%0x) (%0=%(x0))

and

qn, m, %0 ,*
:=

qn, m,%0
(x)

qn, m,%0
(t0)

(t0=tn, m(x0)). (51)

It is a matter of simple calculation that

q$n, m, %0
(x)=&(1+x)m&2 (1&x)n&m&1

_[n%0x2+(n&1+(n&2m+1) %0) x+n&2m+1&%0]

and so

q$n, m, %0
(t0)=&(1+t0)m&2 (1&t0)n&m&1

_[(nt2
0+(n&2m+1) t0&1) %0

+(n&1) t0+n&2m+1]=0

which implies that qn, m,%0 ,*
(x) assumes its maximum on [&1, 1] at x=t0 .

Further, we observe that

rn, m(t0 ; x0)&q$n, m, %0 , *
(x0)

=
(1+x0)m&1 (1&x0)n&m&1 (2m&n&nx0)

(1+t0)m (1&t0)n&m

+
(1+x0)m&2 (1&x0)n&m&1

(1+t0)m&1 (1&t0)n&m (1+%0 t0)

_[n%0 x2
0+(n&1+(n&2m+1) %0) x0+n&2m+1&%0]

=(1&%0)
(1+x0)m&2 (1&x0)n&m&1

(1+t0)m (1&t0)n&m (1+%0 t0)
Rn, m(t0; x0)=0;

i.e., q$n, m, %0 ,*
(x0)=rn, m(tn, m(x0); x0). Thus (50) holds for p=qn, m, %0 ,*

.
Note that qn, m, %0

(and so also qn, m, %0 ,*
) is really of degree n&1 when

%0=0, i.e., when t= &1+2(m&1)�(n&1).
According to (24$), the sharp estimate for p$(x) contained in (24) holds

even if we only assume p(tn, m(x))�1; i.e., p((nx2+(n&2m+1) x&1)�
((n&1) x+n&2m+1))�1.
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3.2. The Lower Bound for p$(x)

In order to obtain the lower bound for p$(x) it is sufficient to observe
that the polynomial p(&x) also belongs to ?n and so by (23) and (24),

&p$(&x)�En(x) for all x # [&1, 1],

which is equivalent to (25).

3.3. Proof of Corollary 1

The case n=1 is covered by the result of Section 3.1.1. Let n�2 and
recall that the polynomials for which the pointwise bounds in Theorem 3
are attained have all their zeros on R"(&1, 1). By (9) the estimate (6)
holds at least for

|x|�{1&
2

- e - n \1&
1
n+

n&1

=
1�2

and so, certainly, for |x|�3�4.
Now note that, according to cases m=1 and m=n of (23),

| p$(x)|�q$n, 1,*
(x) for &1�x�'n, 1= &1+

3n&1&- 5n2&6n+1
n2

and so, definitely, for &1�x�&1+3�4n. It follows that (6) holds for
1&3�4n�|x|�1 and, besides,

}p$ \&1+
3

4n+ }�q$n, 1,* \&1+
3

4n+�
1
2 \1&

1
n+

&n+1

} n }
5
8

. (52)

Next, we observe that

1+ax=
1+a

2
(1+x)+

1&a
2

(1&x)

and so, the polynomial p(ax) # ?n for all a # [&1, 1]. Hence,

}p$ \\&1+
3

4n+ a+ }�1
2 \1&

1
n+

&n+1

} n }
5
8

;

i.e.,

}p$ \\&1+
3

4n+ a+ }�1
2 \1&

1
n+

&n+1

} n }
5

8 |a|
for |a|�1.

This implies that (6) holds for 5
8�|x|�1&3�4n.
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3.4. Proof of Corollary 2

In view of (25), &En(0)�a1�En(0). Hence, it is enough to determine
En(0).

From (19) and (20), it readily follows that 0 # [!n,m , 'n, m] if and only if

:n :=
2n&1+- 4n+1

4
�m�

2n+1+- 4n+1
4

=: ;n .

The following observations help us identify the values of n for which
[:n , ;n] contains an integer m:

I. ;n&:n= 1
2 for all n and so :n , ;n cannot both be integers.

II. :n+1&;n=1�(- 4n+5+- 4n+1)<1�(4 - n).

In view of I and II, at least one of the two intervals [:n&1, ;n&1],
[:n+1, ;n+1] will contain an integer if [:n , ;n] does not. Thus three con-
secutive intervals [[:& , ;&]]n+1

&=n&1 cannot be devoid of integers.

III. Since

;n+2&:n<;n+2&:n+2+
1

4 - n+1
+;n+1&:n+1+

1

4 - n
+;n&:n

=
3
2

+
1

4 - n+1
+

1

4 - n

<2 for n�1,

the three intervals [:n , ;n], [:n+1, ;n+1], [:n+2 , ;n+2] cannot each con-
tain an integer. However, two consecutive intervals can.

IV. For :n or ;n to be an integer it is necessary and sufficient that
4n+1 be the square of an integer. If :n is an integer, then both [:n , ;n],
[:n+1, ;n+1] contain an integer.

Since 4n+1=(2k+1)2 if and only if n=k(k+1) we consider the
sequence [nk]�

k=1, where nk :=k(k+1). For each k, either :nk or ;nk is an
integer. To be precise :nk (=k(k+2)�2) is an integer if k is even and ;nk

(=(k+1)2�2) is an integer if k is odd. Note that the integer mk lying in
[:nk , ;nk] can be written as (n+k)�2 or (n+k+1)�2, according as k is
even or odd. Hence if n=k(k+1) then a1 is bounded above by
q$n, (n+k)�2, *

(0) if k is even and by q$n, (n+k+1)�2, *
(0) if k is odd. Let k be

even. Then [:nk , ;nk], [:nk+1 , ;nk+1] both contain an integer and so do
[:nk+1&1 , ;nk+1&1], [:nk+1

, ;nk+1
]. However, [:nk+2, ;nk+2] does not. In
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general, [:nk+2j , ;nk+2j] does not contain an integer as long as the frac-
tional part of :nk+2j , i.e., the quantity

1
4[- 4nk+5&- 4nk+1+ } } } +- 4nk+8j+1&- 4nk+8j&3]

= 1
4 [- 4k2+4k+8j+1&(2k+1)]

is positive but less than 1
2 , i.e., for 1� j�k. Note that if n=nk+2j&1,

where k is even and 1� j�k+1 then the interval [:n , ;n] contains
the integer m=mk+ j=k(k+2)�2+(n&nk+1)�2=(n+k+1)�2. Hence
a1�q$n, (n+k+1)�2, *

(0) in this case.
In an analogous manner we see that if n=nk+2j, where k is odd and

1� j�k, then the interval [:n , ;n] contains the integer m=mk+ j=
(k+1)2�2+(n&nk)�2=(n+k+1)�2. Thus again a1�q$n, (n+k+1)�2, *

(0).
All values of n for which [:n , ;n] contains an integer m have now been

identified. The value of the integer m has also been determined which gives
us the interval [!n, m , 'n, m] which contains the origin.

Now let us consider those n for which [:n , ;n] does not contain an
integer. We are assuming that 0 # ('n, m&1 , !n,m) for some m. The polyno-
mial

p(x) :=
qn, m, 0(x)

qn, m, 0(tn, m(0))
=qn&1, m&1, *

(x)

maximizes a1 if and only if tn, m(0)=&1+2(m&1)�(n&1). Since tn,m(0)=
&1�(n&2m+1), this means that n&1= j 2, where j=\(n&2m+1).
Thus m is either equal to (n+ j+1)�2 or to (n& j+1)�2. But the latter
possibility is to be excluded since in that case p$(0)<0.

Now observe that 0 # ('n, m&1 , !n,m) if and only if

2n+1+- 4n+1
4

<m<
2n+3+- 4n+1

4
. (53)

If n # (nk , nk+1) but does not fall in any of the preceding categories, then
m must be equal to (n+k+2)�2. One way to see this is to note that
(n+k+2)�2 is an integer and then to check that it lies in
((2n+1+- 4n+1)�4, (2n+3+- 4n+1)�4) which is an interval of length
1
2 . Now we refer to Step 5 in the proof of (24) and determine the (extremal)
polynomial qn, m, %0 ,*

defined in (51).
With m=(n+k+2)�2, we obtain (see (21))

t0=tn, m(0)=
1

k+1
, %0=%(0)=(k+1)

(k+1)2&(n&1)
n&2(k+1)2 ,
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and

qn, m, %0
(t0)=

(k+2)(n+k)�2 k(n&k&2)�2

(k+1)n&1

(k+1)2&1
2(k+1)2&n

.

The polynomial Qn, k,*
is nothing but qn, m, %0 ,*

of (51).

4. Proofs of Theorems 4, 5, and 5$

4.1. Proof of Theorem 4

It is easily seen that

q$n, k(0)=&(n&2k), q"n, k(0)=(n&2k)2&n,

and so for * # R

q"n, k(0)+*q$n, k(0)=(n&2k)2&*(n&2k)&n

�(n&2k)2&|*| |n&2k|&n

=|n&2k| ( |n&2k|&|*| )&n.

Now note that |n&2k| # [0, 2, ..., n] if n is even, whereas |n&2k| #
[1, 3, ..., n] if n is odd and, hence,

|n&2k| ( |n&2k|&|*| )�{0
1&|*|

for &2�*�2 if n is even
for &1�*�1 if n is odd.

It follows that if n is even then q"n, k(0)+*q$n, k(0)� &n for &2�*�2 while
if n is odd then q"n, k(0)+*q$n,k(0)�&n+1&|*| for &1�*�1. Since
p(x) :=�n

k=0 Ak(1+x)k (1&x)n&k, where Ak�0 for all k, we obtain

p"(0)+*p$(0)= :
n

k=0

Ak[q"n, k(0)+*q$n, k(0)]

� min
0�k�n

[q"n, k(0)+*q$n,k(0)] } :
n

k=0

Ak .

Clearly �n
k=0 Ak=p(0) and so if n is even then

p"(0)�&np(0)&*p$(0)

for all * in [&2, 2], whence

p"(0)�&n+2 | p$(0)|. (26$)
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In order to complete the proof of Theorem 4 we observe that if n is odd
then

p"(0)�(&n+1&|*| ) p(0)&*p$(0) for &1�*�1;

i.e.,

p"(0)� &n+1&$+$ | p$(0)| for 0�$�1. (26")

4.2. Proof of Theorem 5

(i) Note that (30) cannot hold if 2: # (0, c]. So we shall assume
:>c�2. Equating the right-hand sides of (29) and (30), we see that if
c # (- 2, cn) and :>c�2 satisfy the two equations, then

2:=4n(c). (54)

Since 4n(c) decreases to cn on [- 2, cn] we have

d
dc \

2:+c
2:&c+=

4
(2:&c)2 \&c

d:
dc

+:+>0

which implies that the right-hand side of (30) increases monotonically to
� as c increases to cn . We have 44(- 2)=2.24891. . ., 45(- 2)=2.56804 . . .;
besides, the lower bound contained in (28) implies that 4n(- 2)>- n�2 for
all n�4 and so

\1+- 2�- n

1&- 2�- n+
4n(- 2) - n

>\1+
2 - 2

- n +
n�- 2

�1+2 - n+2(n&- 2)

>
4n(- 2)+- 2

4n(- 2)&- 2
.

In other words, the left-hand side of (30) is larger than its right-hand side
at c=- 2. Hence, the first part of Theorem 5 would follow if it could be
shown that gn(c) :=((1+c�- n)�(1&c�- n))4n(c) - n is a decreasing function
of c on [- 2, cn). Since

log gn(c)=4n(c) - n log
- n+c

- n&c
=

#3�2

c(#&4)1�2 ,

where # :=#n(c), we see that

c2(#&4) g$n(c)=gn(c) - #�(#&4) [c(#&6) #$&#(#&4)]

=gn(c) - #�(#&4) {(#&6) \#+
2c2n

n&c2+&#(#&4)=
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=2gn(c) - #�(#&4)
(c2&1) n+c2

n&c2 {#&
6c2

(c2&1)+c2�n=
=gn(c) - #�(#&4)

4c2

n&c2 _[(c2&1) n+c2]

_ :
�

k=0

1
2k+1 \

c2

n +
k

&3n&
<0

because c<cn<- 3&9�5n and [(c2&1) n+c2] ��
k=0 (1�(2k+1))(c2�n)k&

3n (which is clearly an increasing function of c) is negative when
c=- 3&9�5n as can be easily checked.

(ii) Let f (x) :=�n
0 (1+x)t (1&x)n&t d+(t) # Fn . It is easily seen that

f "(0)=�n
0 [(n&2t)2&n] d+(t) and so if we set qn, t(x) :=(1+x)t (1&x)n&t

then for all c in [0, - n) we have

f "(0)=
1
2 |

n

0

2[(n&2t)2&n]

qn, t(c�- n)+qn, t(&c�- n) {qn, t \ c

- n++qn, t \&
c

- n+= d+(t)

�
1
2 { f \ c

- n++ f \&
c

- n+= max
0�t�n

2[(n&2t)2&n]

qn, t(c�- n)+qn, t(&c�- n)
(55)

=\1&
c2

n +
&n�2 1

2 { f \ c

- n++ f \&
c

- n+= max
0�t�n

.c(t),

where

.c(t) :=
2[(n&2t)2&n](1&c2�n)(n&2t)�2

(1&c�- n)n&2t+(1+c�- n)n&2t
.

Since .c(t)�0 if |n&2t|�- n and .c(t)#.c(n&t) we indeed have

max
0�t�n

.c(t)= max
- n�n&2t�n

.c(t).

Note that in (55) equality holds for the function

fc(x) :=(1+x)tc (1&x)n&tc+(1+x)n&tc (1&x)tc,

where tc # [0, 1
2 (n&- n)] is such that

.c(tc)= max
- n�n&2t�n

.c(t). (56)
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Calculating the derivative of .c(t) we see that the point t=tc , where the
desired maximum of .c is attained, satisfies

\1+c�- n

1&c�- n+
n&2t

=

[(n&2t)2&n] log
1+c�- n

1&c�- n
+4(n&2t)

[(n&2t)2&n] log
1+c�- n

1&c�- n
&4(n&2t)

. (56$)

No doubt, (55) gives us the best possible upper bound for sup f # Fn
f "(0) in

terms of 1
2 [ f (c�- n)+ f (&c�- n)] for any prescribed c in [0, - n]; but if

for some c the maximum of fc on [&1, 1] is attained at \c�- n then for
that c we will have

1
2 { fc \ c

- n++ fc \&
c

- n+== max
&1�x�1

fc(x) (57)

and the corresponding bound for supf # Fn
f "(0) given by (55) will also be

the sharp upper bound for supf # Fn
f "(0) in terms of max&1�x�1 f . Dif-

ferentiating fc with respect to x and setting x=c�- n we see that (57) is
equivalent to

\1+c�- n

1&c�- n+
n&2t

=
n&2t+c - n

n&2t&c - n
(t=tc). (57$)

The substitution n&2t=2: - n transforms (56$) into (29) and (57$) into
(30). Applying part (i) of the theorem we conclude that there is a c in
(- 2, cn) and t=tc in [0, 1

2 (n&c - n)], satisfying (56$) and (57$)
simultaneously. It is easily seen that with this choice of c inequality (55)
reduces to (31).

4.3. Proof of Theorem 5$

(a) In view of (54), c
* , n is a root of the equation

Hn(c) :=\1+c�- n

1&c�- n+
4n(c) - n

&
4n(c)+c
4n(c)&c

=0. (32$)

Setting

=n==n(c) := :
�

k=1

1
2k+1 \

c2

n +
k

=
c2

3n
+O \ 1

n2+ ,

we may write

4n(c)=
c

- c2&2
- (1+=n)�[1+(c2�(c2&2)) =n] (58)
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and

\1+c�- n

1&c�- n+
4n(c) - n

=e2c4n(c)(1+=n)=exp { 2c2

- c2&2

(1+=n)3�2

(1+(c2�(c2&2)) =n)1�2= .

We note that for - 2<c�- 3,

(1+=n)3&\1+
c2

c2&2
=n+\1+

3
2

=2
n+

2

= &
2(3&c2)

c2&2
=n&

2(c2+1)
c2&2

=3
n

&
9
4

=4
n&

9c2

4(c2&2)
=5

n<0

and, so,

exp { 2c2

- c2&2

(1+=n)3�2

(1+(c2�(c2&2)) =n)1�2=
<e2c2�- c2&2 } e(3c2�- c2&2) =n

2

=e2c2�- c2&2+e2c2�- c2&2(e(3c2�- c2&2) =2
n&1).

Further, for - (6+8=n)�3(1+=n)<c�- 3 we have

\1+
c2

c2&2
=n+\1&

3&c2

c2&2
=n+

2

&(1+=n)3

=&
3

(c2&2)2 =2
n&

3c2&8
(c2&2)3 =3

n<0,

which means that

exp { 2c2

- c2&2

(1+=n)3�2

(1+(c2�(c2&2)) =n)1�2=
>e2c2�- c2&2 } e&(2c2(3&c2)�(c2&2)3�2) =n

>e2c2�- c2&2&e2c2�- c2&2 2c2(3&c2)
(c2&2)3�2 =n .

Hence (for - (6+8=n)�3(1+=n)<c�- 3),

\1+c�- n

1&c�- n+
4n(c) - n

=e2c2�- c2&2+A(c, n) =n ,
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where

&e2c2�- c2&2 2c2(3&c2)
(c2&2)3�2 <A(c, n)<e2c2�- c2&2(e(3c2�- c2&2) =2

n&1). (59)

On the other hand,

4n(c)+c
4n(c)&c

=
- 1+=n+- c2&2+c2=n

- 1+=n&- c2&2+c2=n

=

c2&1+2 - c2&2 - 1+2((c2&1)�(c2&2)) =n+(c2�(c2&2)) =2
n

+(c2+1) =n

3&c2&(c2&1) =n

belongs to

\c2&1+2 - c2&2+(c+1)2 =n

3&c2&(c2&1) =n
,

c2&1+2 - c2&2+[(c2+1)+2(c2&1)�- c2&2] =n

3&c2&(c2&1) =n +
because

\1+
c

- c2&2
=n+

2

<1+2
c2&1
c2&2

=n+
c2

c2&2
=2

n<\1+
c2&1
c2&2

=n+
2

.

Consequently,

4n(c)+c
4n(c)&c

=
1+- c2&2

1&- c2&2
+B(c, n) =n ,

where

(c2&1)(1+- c2&2)2+(3&c2)(c+1)2

(3&c2)[3&c2&(c2&1) =n]

<B(c, n)

<
(c2&1)(1+- c2&2)2+(3&c2)[(c2+1)+2(c2&1)�- c2&2]

(3&c2)[3&c2&(c2&1) =n]
.

(60)
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Thus we have

Hn(c)=h(c)+A(c, n) =n&B(c, n) =n ,

where A(c, n) and B(c, n) satisfy (59) and (60), respectively. Using the
definition of c

*
as the root of h(c)=0 in (- 2, - 3), it is easily seen that

Hn(c
*

)=A(c
*

, n) =n&B(c
*

, n) =n<0

if c
*

<%n :=- (3+=n(c))�(1+=n(c))=- 3&c2�(3 - 3 n)+O(1�n2) (which
implies that 3&c2

*
&(c2

*
&1) =n(c)>0) and that Hn(c)<0 immediately to

the left of %n if %n�c
*

. Hence, for each n�4, there exist points to the left
of c

*
, where Hn(c) is negative. While proving Theorem 5 we have shown

that Hn(- 2)>0 and so the zero c
* , n of Hn lies somewhere in (- 2, c

*
);

i.e., (a) holds.

(b) We shall now prove that if n�410 then already Hn(c*
&1.35�

(n&3)) is positive; i.e.,

h(c)>(&A(c, n)+B(c, n)) =n at c=c
*

&1.35�(n&3).

For this we apply the mean value theorem to conclude that if
1.451<c<c

*
, then for some !c in (c, c

*
)

h(c)=h(c
*

)+h$(!c)(c&c
*

)=h$(!c)(c&c
*

).

Since

h$(!)=&2! \ 4&!2

(!2&2)3�2 e2!2�- !2&2+
1

(1&- !2&2)2
- !2&2+ ,

we conclude that

h(c)>
2c

(1&- c2&2)2
- c2&2

|c&c
*

|.

On the other hand, if

S(c, n) :=(c2&1)(1+- c2&2)2+(3&c2) {c2+1+
2(c2&1)

- c2&2=
+(3&c2)2 [3&c2&(c2&1) =n]

2c2

(c2&2)3�2 e2c2�- c2&2,
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then

&A(c, n)+B(c, n)<
1

(3&c2)[3&c2&(c2&1) =n]
S(c, n)

=
c2

(c2&2+c2=n)(3&c2)(42
n(c)&c2)

S(c, n), (61)

by (58). At this stage we need to find a lower estimate for 42
n(c)&c2. Since

:= 1
24n(c) satisfies (30) we have

1

42
n(c)&c2

=
1

(4n(c)+c)2 exp[2c(1+=n(c)) 4n(c)]. (62)

Putting tn :=42
n(c)&c2, we find

1
tn

=
1

(- tn+c2+c)2
e2c(1+=n(c)) - tn+c2

�
1

(- tn+c2+c)2
e2c(1+=n(- 3)) - tn+c2

�
1

(- tn+3+- 3)2
e2 - 3 (1+=n(- 3)) - tn+3.

This implies that tn=42
n(c)&c2 cannot be smaller than the only positive root

of the equation

(- t+3+- 3)2=te2 - 3 (1+=n(- 3)) - t+3 (63)

which can be easily handled numerically. In particular, we obtain

t4�0.00130. . . , t10�0.01402. . . , t30�0.02355. . . ,

t100�0.02734515. . . , t300�0.02846778. . . .

The lower bound for tn obtained in this manner is an increasing function
of n since the root of (63) clearly is.

For the remainder of this proof we shall assume n�410 so that tn>
0.02846778. . . and 1�(42

n(c)&c2)<35.1275. Returning to (61) we find that

(3&c2)(&A(c, n)+B(c, n))

<35.1275 _c2(c2&1)(1+- c2&2)2

c2&2
+(3&c2)

c2

c2&2

_{c2+1+
2(c2&1)

- c2&2=+(3&c2)3 2c4

(c2&2)5�2 e2c2�- c2&2& .
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Now we observe that c2(c2&1)(1+- c2&2)2�(c2&2) is an increasing
function of c on the interval [1.59808 . . . , - 3] so that c2(c2&1)
(1+- c2&2)2�(c2&2)�24. It follows that if c # (c

*
& 1

300 , c
*

), then

(3&c2)(&A(c, n)+B(c, n))<(35.1275)(25);

i.e.,

(1&- c2&2)(&A(c, n)+B(c, n))<878.186�(1+- c2&2).

Hence Hn(c)>0, provided

&2c

(1&- c2&2) - c2&2
(c&c

*
)>

878.186

1+- c2&2
=n(c),

and so, certainly, if

1
300

>&(c&c
*

)>439.093 \(1&- c2&2) - c2&2

(1+- c2&2) c +c=c
*

&1�300

} =n(c
*

).

Both these inequalities are satisfied for c=c
*

&1.35�(n&3) if n�410.
Hence (b) holds.

The bound in (31$) is based on an estimate for the quantity
U :=- 4:2&c2 appearing in (31). Referring to (30) and (62) we see that U
satisfies the equation

U=(- U 2+c2&c) ec(1+=n(c)) - U2+c2

and so

U�(- U 2+c2

*
&c

*
) ec

*
(1+=n(c

*
)) - U2+c2

*

=
U 2

- U 2+c2

*
+c

*

ec
*

(1+=n(c
*

)) - U 2+c2
*,

i.e.,

1�
U

- U 2+c2

*
+c

*

ec
*

(1+=n(c
*

)) - U2+c2
*.

Hence, U does not exceed the only root Un of the equation

1=
U

- U 2+c2

*
+c

*

ec
*

(1+=n(c
*

)) - U2+c2
*. (64)
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It is easily checked that Un increases if =n(c
*

) is replaced by something
smaller. However, =n(c

*
)>0 for all n and so U is always smaller than the

root U� :=0.171758633 . . . of the equation

1=
U

- U 2+c2

*
+c

*

ec
*

- U2+c2
*. (64$)

From the estimate - 4:2&c2�U� it follows that 2:�- c2

*
+U 2

� . This,
in turn, gives an upper estimate for (4:2&1)�2:=2:&1�2:, which when
multiplied by U� gives the number 0.199631037. . . appearing in (31$).

References

1. S. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des
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